5,837 research outputs found

    Coexistence of solutions in dynamical mean-field theory of the Mott transition

    Full text link
    In this paper, I discuss the finite-temperature metal-insulator transition of the paramagnetic Hubbard model within dynamical mean-field theory. I show that coexisting solutions, the hallmark of such a transition, can be obtained in a consistent way both from Quantum Monte Carlo (QMC) simulations and from the Exact Diagonalization method. I pay special attention to discretization errors within QMC. These errors explain why it is difficult to obtain the solutions by QMC close to the boundaries of the coexistence region.Comment: 3 pages, 2 figures, RevTe

    The Finite Temperature Mott Transition in the Hubbard Model in Infinite Dimensions

    Full text link
    We study the second order finite temperature Mott transition point in the fully frustrated Hubbard model at half filling, within Dynamical Mean Field Theory. Using quantum Monte Carlo simulations we show the existence of a finite temperature second order critical point by explicitly demonstrating the existence of a divergent susceptibility as well as by finding coexistence in the low temperature phase. We determine the location of the finite temperature Mott critical point in the (U,T) plane. Our study verifies and quantifies a scenario for the Mott transition proposed in earlier studies (Reviews of Modern Physics 68, 13, 1996) of this problem.Comment: 4 RevTex pages, uses epsf, 2 figure

    The effect of load in a contact with boundary lubrication

    Get PDF
    The effect of the transition load on the wear in a contact with boundary lubrication was investigated. An experimental method was developed for this purpose, and parameters affecting the boundary lubrication under industrial operating conditions were identified. These parameters are the adsorbed boundary film, the contact microgeometry (surface roughness), macrogeometry, and hardness of materials used. It was found that the curve of the tops of the surface protrustion affect the transition load, and thus the boundary lubrication. The transition load also depends on the chemical nature of the contact and its geometrical and mechanical aspects

    Mott transition at large orbital degeneracy: dynamical mean-field theory

    Full text link
    We study analytically the Mott transition of the N-orbital Hubbard model using dynamical mean-field theory and a low-energy projection onto an effective Kondo model. It is demonstrated that the critical interaction at which the insulator appears (Uc1) and the one at which the metal becomes unstable (Uc2) have different dependence on the number of orbitals as the latter becomes large: Uc1 ~ \sqrt{N} while Uc2 ~ N. An exact analytical determination of the critical coupling Uc2/N is obtained in the large-N limit. The metallic solution close to this critical coupling has many similarities at low-energy with the results of slave boson approximations, to which a comparison is made. We also discuss how the critical temperature associated with the Mott critical endpoint depends on the number of orbitals.Comment: 13 pages. Minor changes in V

    Superconductivity in the Two-Band Hubbard Model in Infinite Dimensions

    Full text link
    We study a two-band Hubbard model in the limit of infinite dimensions, using a combination of analytical methods and Monte-Carlo techniques. The normal state is found to display various metal to insulators transitions as a function of doping and interaction strength. We derive self-consistent equations for the local Green's functions in the presence of superconducting long-range order, and extend previous algorithms to this case. We present direct numerical evidence that in a specific range of parameter space, the normal state is unstable against a superconducting state characterized by a strongly frequency dependent order-parameter.Comment: 12 pages (14 figures not included, available upon request), Latex, LPTENS Preprint 93/1

    Potential-energy (BCS) to kinetic-energy (BEC)-driven pairing in the attractive Hubbard model

    Full text link
    The BCS-BEC crossover within the two-dimensional attractive Hubbard model is studied by using the Cellular Dynamical Mean-Field Theory both in the normal and superconducting ground states. Short-range spatial correlations incorporated in this theory remove the normal-state quasiparticle peak and the first-order transition found in the Dynamical Mean-Field Theory, rendering the normal state crossover smooth. For UU smaller than the bandwidth, pairing is driven by the potential energy, while in the opposite case it is driven by the kinetic energy, resembling a recent optical conductivity experiment in cuprates. Phase coherence leads to the appearance of a collective Bogoliubov mode in the density-density correlation function and to the sharpening of the spectral function.Comment: 5 pages, 4 figure

    Density of states near the Mott-Hubbard transition in the limit of large dimensions

    Full text link
    The zero temperature Mott-Hubbard transition as a function of the Coulomb repulsion U is investigated in the limit of large dimensions. The behavior of the density of states near the transition at U=U_c is analyzed in all orders of the skeleton expansion. It is shown that only two transition scenarios are consistent with the skeleton expansion for U<U_c: (i) The Mott-Hubbard transition is "discontinuous" in the sense that in the density of states finite spectral weight is redistributed at U_c. (ii) The transition occurs via a point at U=U_c where the system is neither a Fermi liquid nor an insulator.Comment: 4 pages, 1 figure; revised version accepted for publication in Phys. Rev. Let

    A new approach for perovskites in large dimensions

    Full text link
    Using the Hubbard Hamiltonian for transition metal-3d and oxygen-2p states with perovskite geometry, we propose a new scaling procedure for a nontrivial extension of these systems to large spatial dimensions DD. The scaling procedure is based on a selective treatment of different hopping processes for large DD and can not be generated by a unique scaling of the hopping element. The model is solved in the limit D→∞D \rightarrow \infty by the iterated perturbation theory and using an extended non-crossing approximation. We discuss the evolution of quasi particles at the Fermi-level upon doping, leading to interesting insight into the dynamical character of the charge carriers near the metal insulator instability of transition metal oxide systems, three dimensional perovskites and other strongly correlated transition metal oxides.Comment: 5 pages (TeX) with 2 figures (Postscript
    • …
    corecore